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Missing physics in stick-slip dynamics of a model for peeling of an adhesive tape
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It is now known that the equations of motion for the contact point during peeling of an adhesive tape
mounted on a roll introduced earlier are singular and do not support dynamical jumps across the two stable
branches of the peel force function. By including the kinetic energy of the tape in the Lagrangian, we derive
equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics. In the low
mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for
the earlier equations. Our analysis also shows that the mass of the ribbon has a strong influence on the nature
of the dynamics.
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It is well established that there are three different modesatural consequence of the equations of mofiil,13 as
of failure during the peeling of an adhesive tape from a subthe jumps in the rupture speed were introduesdernally
strate[1]. At low applied velocities, the peeling front keeps once the velocity exceeded the limit of stability. Later, Cic-
pace with the pull velocity and the failure mode is cohesivecotti et al. [4] interpreted stick-slip jumps as catastrophes
At high pull velocities, the failure is adhesive. In betweenwith the belief that the jumps in the rupture velocity could
these two regimes, there is an intermittent mode of failurenot be obtained from these equations of mofiéh Recently
corresponding to stick-slip dynamif$,2] accompanied by a we derived these equations starting from a Lagrangian and
characteristic audible noise. The stick-slip nature suggestshowed[11] that these equations are singular and fall in the
that this regime is unstable. Indeed, the strain energy releasategory of differential-algebraic equatiofiBAE) [13] re-
rate exhibits two stable branches separated by an unstabigliring a special algorithm. Using a DAE algorithm, we
branch. Detailed studies by Maugis and Barquifi} and  showed that stick-slip jumps across the two branches arise in
others[3-5] show that the nature of the wave forms of the & pure dynamical way. The dynamics was also shown to be
pull force exhibits sinusoidal, sawtooth, and highly irregularmuch richer than anticipated earlier. )
wave patterns. Gandet al.[6] have carried out a dynamical ~ However, even as the DAE algorithm offers a mathemati-
analysis of the force wave forms and of acoustic emissioff@ framework for obtaining solutions for these singular
signals, and report chaotic dynamics at the upper end of th quations, it is difficult to provide any physical interpretation

pull velocities[6]. Analysis of acoustic signals has also been or the “mass ma}trix” that removes the sjngularity. T_hus, a
carried out by Ciccottet al. [5] proper identification of the missing physics responsible for

Stick-slip behavior is commonly observed in a number Ofthe absence of dynamical jumps in these equations still re-

. : mains to be addressed. As we shall comment later, this is a
driven systems such as the Portevin—Le Chat¢C) ef- necessary step for understanding the origin of acoustic emis-

fe(;t [7]’. fri.ctional sliding [8], and earthquake dynami{:@]. sion (AE) during peeling, a problem that has remained unre-
Stick-slip is characterized by the system spending most para,IoIved. A reexamination of the earlier derivation showed that

of the time in the stuck state and a short time in the slip stateya kinetic energy of the stretched part of the tape was ig-
One common feature of such systems is that the force exhily, o Here, we show that the inclusion of this additional

@ts ‘negative ﬂOW rate characteristi_(tNFR.C). In fact, stud- kinetic energy removes the singularity thus converting them
1es of dynamics of such systems, including that Of_ the adhey to set of ordinary differential equation®DE). Further,
sive tape, use the macroscopic phenomenological NFR tick-slip jumps emerge as a natural consequence of the in-

featu_;)elz as an input, although the unstable region is N0t aGygrent dynamics itself. Apart from reproducing the DAE so-
cessIbie. lutions for low mass limits, our analysis shows that the mass

Early studies by Maugis and Barquifs] looked at the o the tape has a considerable influence on the nature of the
peeling problem from a dynamical angle. Later, a detaile ynamics.

study was carrleq out by Hong and Vi8] on a th(ee— A schematic of the experimental setup is shown in Fig.
variable model originally introduced by Maugig0] using (4 An adhesive roller tape of radit® is mounted on an
an “N"-shaped function that mimics the peel force function.axis passing throug® normal to the paper and is driven at a
They report that the system of equations displayed periOdiEonstant speel by a couple-meter motor positioned @t.
and chaotic stick-slip solutions. However, it was later recog-rpe pull forceF acting along the line joining the contact
nized that the stick-slip oscillations wermt obtained as a point P andO’ subtends an angieto the tangent at the point
P. As the contact poinP moving with a local velocity can
undergo rapid bursts of velocity during rupture, the peeled
*Electronic address: rumi@mrc.iisc.ernet.in length of the ribbonL=PQO’ is not fixed. We note here that
"Electronic address: garani@mrc.iisc.ernet.in the peel force often called the force of adhesidanoted by
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FIG. 2. (a), (b) The v—F phase plots fol =107, V=1 corre-
sponding to the DAE and ODE solutions fio=107%. The solid line

FIG. 1. (a) Schematic plot of an experimental setup) The
showsf(v,1).

plots of f(v,V) for V=1 (solid curve, V=4 (dotted curve

f) is what is measured in experiments in steady-state condMariablev in the constraint equation by differentiating Eq.
tions. Let the distance from the center of the roller tap (1) and using Eqgs(2) and (3). This gives equations of mo-
the motorO’ bel anda the angle subtended B0 with the  tion for @, w, u andv
horizontal lineOO’. Let | be the moment of inertia of the

roller tape,w the angular velocityk the elastic constant of a=w-ulR, )

the tape, andi the elastic displacement of the tape. As the

contact point is not fixedp=a+v/R. The geometry of the = R_COSO fv,V) 5)

setup gived. cosf=-I sina andL sin #=I cosa—R. As the | (1-cose) '’

peeling pointP moves, the pull velocity is the sum of three

contributions[1], i.e., V=v+u-L, which gives u=V-v-R(cosb)a, (6)

v=V-U+L=V-i-R(cosh)a. (1) . o .

v=-U+R(sin ) ba — R(cosb)a. (7)

Then, the Lagrangian i£=Ux—Up with the kinetic energy
given by UK:%I(D2+%m'u2 and the potential energy byp
=2ki?. [510? is the kinetic energy of the roller tape and 1 Ku
%m'uz, ignored earlier, arises due to the kinetic energy of the = m P
stretched part of the tapa.refers to the time derivative af.
In principle m (m=myL(t) where my is the mass per unit
length depends on time through However, for all practical
purposesm can be treated as constdniVe write the dissi-
pation function asR =®(v,V)=[f(v,V)dv, wheref(v,V) is
assumed to be derivable from a potential functibtw,V),
physically represents the peel force, and is taken to depe
on the pull velocity and rupture speed aq id].

Using the Lagrange equations of motion,

d(aﬁ) aL IR
— | —_+—.:O
dt\ 9o da  da

d(&[,) L IR
~|=]-—+—=0,
dt\ qu au  au

and using(a, a,u,U) as the generalized coordinate, we get

Using Egs.(2) and(3) in Eq. (7), we get

fo,V) (R cosd)?f(v,V)
m m(1-cosb) (1 - cosb)

+ ?dz[l cosa — R(cosﬁ)z]}. (8)
We retain the dynamization scheme introduced earlier
[11] adopted from the PLC effe€15] wherein the difference
tween the maximum and minimum & ,V) is assumed
to decrease with increasing. The parametrized form of
f(v,V) used here is given by

f(U,V) - 402)0.34+ 17]U0.16+ 6&(0/7.7} —2\/L5
’ ~ (415 - 45/°4-0.35/*19%°, (9)

Equation(9) mimics the general trend of the experimental
peel force function and is essentially the same as used earlier
[11] except that it accommodates larger excursions of trajec-
tories arising from the introduction of the additional time
scale[Fig. 1(b)]. The fixed point of Eqs(4)—(6) and (8)

v R cosd given by @=0, o=V/R, u=f(V,V)/k andv=V becomes un-
a=-g* 1(1- Cosg)f(v,V), (2 stable whenV is such thatf’(V,V)<0 leading to a Hopf
bifurcation.
We have solved Eq$4)—(6) and(8) by adaptive step size
m'U:m[f(v,V)—kU(l—COSG)]- (3)  stiff differential equations solveXMATLAB packagg and

studied the dynamics over a wide range of values of
Note that the right-hand side of E€B) is the algebraic con- | (kgm?), V (ms™?) for m (kg) ranging from 10* to 0.1
straint in Eq.(10) of Ref.[11] or Eq.(5d) of Ref.[3]. These (keeping k=1000 N m!, R=0.1 m, andl=1 m). (Hence-
equations in their present form are still not suitable for fur-forth, we suppress the units for the sake of breyvitiere, we
ther analysis as they have to satisfy the constraint(Bgln  present result§obtained after discarding the initial tran-
the spirit of classical mechanics of systems with constraintsients for a few representative values of thewhen (I,V)
(see Ref[14]), we derive the equation for the accelerationare at low and high values. We show that for low we
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essentially recover the DAE solutions reported eafliel. provided for the sake of comparison as they essentially cor-
Further we show that the mass of the tape has a strong imespond to the DAE solution. Consider the phase plots in
fluence on the nature of the dynamics. v-F plane shown in Fig. @) for m=10* and 3b) for m

A rough idea of the nature of the dynamics can be ob=0.1. It is clear that the influence of increasimgs consid-
tained by comparing the frequeney,=(k/m)¥? associated erable. In particular, note that the sharp changes in the
with u with Q_=(Rf/1)Y2 corresponding tax. Sincef (in  v-F plot [Fig. 3(@] at the upper end of for small m are
newtons is limited to 180-280, the range d, (s™)) is rendered smooth for largm case[Fig. 3b)]. Indeed, the

_ 115 : B effect of the additional time scale due to the finite mass of
llgzgzoﬁ 6|7r]3 I:(Z)rn?[r::::lsf)n ;(T ()Sfjgcirse%sllgg tﬁ)ﬁiff(;(:r;;r_ge the tape is also evident in the plots wft) for the low and
.0D. Qy

] high mass cases shown in Figgc)3and 3d), respectively.
creasing to 100 fom=0.1. Thus, one expects the nature OfFi(\r;’IaIIy, it is clear that the phasg pldEig. 3(b)] fills t?}e spac):e
solutions to be influenced with increasingfor fixed I which 54 is suggestive of chaotic dynamics. The chaotic nature
also depends o¥ [11]. _ _ can be ascertained by calculating the Lyapunov spectrum.
Here, we present our numerical results. Consider the low)sing the QR decomposition methoftL6], we have calcu-
mass limit, i.e., low kinetic energy of the tape. Then the|ated the Lyapunov spectrum and find a large positive expo-
right-hand side of Eq(3) is small, and turng(v,V)-ku(1 nent with a value~4.4 s [Fig. 3e)].
-cosf) =f(v,V)—F(1-cosf) =0 (which is the algebraic Increasingm does not always increase the level of com-
constraint that makes the equations singul@hus, one ex- plexity of the solutions. As an example, Figgagdand 4b)
pects that the DAE solutions are reproduced for small  show plots ofv(t) for m=10"* and 0.1, respectively, for
which we have verified for the entire range of value$ ahd =102 for V=4. While the solution for smalifn is similar to
V studied previouslyf11]. (For numerical calculations, we that of DAE which exhibits several sharp spikes in velocity
have usedn=10"* as the low mass limit.As an example [Fig. 4@)], for large mass(m=0.1), v(t) is surprisingly
Figs. 2a) and Zb) show the phase plots in theF plane  simple and is periodi€Fig. 4(b)]. Indeed, this is better seen
obtained using the DAE algorithm and ODE E¢$—(6) and  in the phase plots-F for m=10"* and 0.1 shown in Figs.
(8) for m=107%, respectively, keeping=10"°, V=1. It is  4(c) and 4d) respectively. In contrast to the low massF
evident that the DAE solution is similar to the ODE solution. plot, which is chaotic(see a similar DAE solution in Fig.
Much more complex dynamics emerges as a result of &(c) in Ref.[11]), a simple limit cycle emerges fan=0.1.
competition between this additional time scale and otheAs the nature of the dynamics can vary from a simple limit
time scales present in the system. Consider the results faycle to a chaotic attractor as the three parameters are varied,
m=10*and 0.1, fol =102, andV=1. The smalmplots are  these results can be summarized as phase diagrams in the

81 (b)
6
® 4
o} l FIG. 4. (a), (b) Plot of v(t) for
0 m=10% and 0.1 for1=1072, V
15.6 158 ¢ 16 16.2 =4. (c), (d) The corresponding
phase space trajectorie$v,V) is
(c) (d) shown by a bold line(Units of v,
as0 V are in ms1, F in newtons,l in
f, kg m? andt in seconds.
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150 S .
107 Y 10 10' 10" vy 1o° 10’

055201-3



RAPID COMMUNICATIONS

R. DE AND G. ANANTHAKRISHNA PHYSICAL REVIEW E 71, 055201R) (2005

4f 0 ve1 Cov=2 T V=3’ T ov=4’ for low mass become chaotic with increasimgIn contrast,
Wyper»*rpccer o " "1 forhighV, the trajectories that are chaotic for low are
3 N Y * rendered nonchaotic with increaserof

N o e et : * Apart from resolving the central issue, the inclusion of
10°F++0- ¢ Xt c oo A kinetic energy of the tape provides a mechanism for convert-

ing the potential energy stored in the stretched tape into ki-
netic energy and hence provides a basis for explaining acous-
tic emission during peeling. This involves first extending the
model to include the spatial degrees of freedom of the peel
front and including an additiongkupture velocity depen-
dent dissipation function to mimic the AE energy dissipated
) - (along the lines if17]). The extended model also helps to
!—m plane for different values of .puII velocitie¥, as shown analyze the contact line dynamics of the peeling front, a
in Fig. 5. Apart from the chaotic state:) seen for a few rohlem which is not well understood. Preliminary results
values of the parameters, for most values, the system is pe1g] show that the energy dissipated occurs in bursts similar
riodic (@) and for a few other values, the attractor is 10ng g the nature of AE signals seen in experimdists Here, it
periodic (X). We also find a(marginally chaotic attractor g worthwhile to comment on the dynamization of the fric-

(O) for V=1, m=107", |:191-3, for which the positive o Jaw. The physical origin of this can be attributed to the
Lyapunov exponent is-0.03 s* (which is much beyond the  \jiscoelastic nature of the fluid, which in turn implies a

error in computation _ .. frequency-dependent elastic constant. Thus as higher pull
In summary, we have demonstrated that the missing timgpeeq allows lesser time for internal relaxation to be com-
scale arising from the kinetic energy of the stretched part ofjete, the viscoelastic fluid behaves much like an elastic

the tape plays an important role in the peeling dynamics okqjig. Clearly, a rigorous derivation of the peel force function
the adhesive tape. As the inclusion of this term lifts the sinf.om microscopic considerations that includes the effect of
gularity in the equations of motion hitherto considered, sticke viscoelastic glue at the contact point is needed to under-
slip jumps across the two resistive branches emerge as @and the dynamics appropriately.

consequence of the inherent dynamics. Further, our study

shows that the mass of the tape has a strong influence on the R.D. wishes to thank Rangeet Bhattacharyya for many
nature of the dynamics. For low pull velocities, and high useful discussions. This work is financially supported by De-
the complexity increases, i.e., trajectories that are not chaotigartment of Science and Technology-SP/S2k-26/98, India.
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FIG. 5. Phase diagram in them plane for various values &f.
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