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It is now known that the equations of motion for the contact point during peeling of an adhesive tape
mounted on a roll introduced earlier are singular and do not support dynamical jumps across the two stable
branches of the peel force function. By including the kinetic energy of the tape in the Lagrangian, we derive
equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics. In the low
mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for
the earlier equations. Our analysis also shows that the mass of the ribbon has a strong influence on the nature
of the dynamics.
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It is well established that there are three different modes
of failure during the peeling of an adhesive tape from a sub-
stratef1g. At low applied velocities, the peeling front keeps
pace with the pull velocity and the failure mode is cohesive.
At high pull velocities, the failure is adhesive. In between
these two regimes, there is an intermittent mode of failure
corresponding to stick-slip dynamicsf1,2g accompanied by a
characteristic audible noise. The stick-slip nature suggests
that this regime is unstable. Indeed, the strain energy release
rate exhibits two stable branches separated by an unstable
branch. Detailed studies by Maugis and Barquinsf1g and
othersf3–5g show that the nature of the wave forms of the
pull force exhibits sinusoidal, sawtooth, and highly irregular
wave patterns. Ganduret al. f6g have carried out a dynamical
analysis of the force wave forms and of acoustic emission
signals, and report chaotic dynamics at the upper end of the
pull velocitiesf6g. Analysis of acoustic signals has also been
carried out by Ciccottiet al. f5g.

Stick-slip behavior is commonly observed in a number of
driven systems such as the Portevin–Le ChateliersPLCd ef-
fect f7g, frictional sliding f8g, and earthquake dynamicsf9g.
Stick-slip is characterized by the system spending most part
of the time in the stuck state and a short time in the slip state.
One common feature of such systems is that the force exhib-
its “negative flow rate characteristic”sNFRCd. In fact, stud-
ies of dynamics of such systems, including that of the adhe-
sive tape, use the macroscopic phenomenological NFRC
feature as an input, although the unstable region is not ac-
cessible.

Early studies by Maugis and Barquinsf1g looked at the
peeling problem from a dynamical angle. Later, a detailed
study was carried out by Hong and Yuef3g on a three-
variable model originally introduced by Maugisf10g using
an “N”-shaped function that mimics the peel force function.
They report that the system of equations displayed periodic
and chaotic stick-slip solutions. However, it was later recog-
nized that the stick-slip oscillations werenot obtained as a

natural consequence of the equations of motionf4,11,12g as
the jumps in the rupture speed were introducedexternally
once the velocity exceeded the limit of stability. Later, Cic-
cotti et al. f4g interpreted stick-slip jumps as catastrophes
with the belief that the jumps in the rupture velocity could
not be obtained from these equations of motionf4g. Recently
we derived these equations starting from a Lagrangian and
showedf11g that these equations are singular and fall in the
category of differential-algebraic equationssDAEd f13g re-
quiring a special algorithm. Using a DAE algorithm, we
showed that stick-slip jumps across the two branches arise in
a pure dynamical way. The dynamics was also shown to be
much richer than anticipated earlier.

However, even as the DAE algorithm offers a mathemati-
cal framework for obtaining solutions for these singular
equations, it is difficult to provide any physical interpretation
for the “mass matrix” that removes the singularity. Thus, a
proper identification of the missing physics responsible for
the absence of dynamical jumps in these equations still re-
mains to be addressed. As we shall comment later, this is a
necessary step for understanding the origin of acoustic emis-
sion sAEd during peeling, a problem that has remained unre-
solved. A reexamination of the earlier derivation showed that
the kinetic energy of the stretched part of the tape was ig-
nored. Here, we show that the inclusion of this additional
kinetic energy removes the singularity thus converting them
into set of ordinary differential equationssODEd. Further,
stick-slip jumps emerge as a natural consequence of the in-
herent dynamics itself. Apart from reproducing the DAE so-
lutions for low mass limits, our analysis shows that the mass
of the tape has a considerable influence on the nature of the
dynamics.

A schematic of the experimental setup is shown in Fig.
1sad. An adhesive roller tape of radiusR is mounted on an
axis passing throughO normal to the paper and is driven at a
constant speedV by a couple-meter motor positioned atO8.
The pull forceF acting along the line joining the contact
point P andO8 subtends an angleu to the tangent at the point
P. As the contact pointP moving with a local velocityv can
undergo rapid bursts of velocity during rupture, the peeled
length of the ribbon,L=PO8 is not fixed. We note here that
the peel force often called the force of adhesionsdenoted by
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fd is what is measured in experiments in steady-state condi-
tions. Let the distance from the center of the roller tapeO to
the motorO8 be l anda the angle subtended byPO with the
horizontal lineOO8. Let I be the moment of inertia of the
roller tape,v the angular velocity,k the elastic constant of
the tape, andu the elastic displacement of the tape. As the
contact point is not fixed,v=ȧ+v /R. The geometry of the
setup givesL cosu=−l sina andL sinu= l cosa−R. As the
peeling pointP moves, the pull velocityV is the sum of three

contributionsf1g, i.e., V=v+ u̇− L̇, which gives

v = V − u̇ + L̇ = V − u̇ − Rscosudȧ. s1d

Then, the Lagrangian isL=UK−UP with the kinetic energy
given by UK= 1

2Iv2+ 1
2mu̇2 and the potential energy byUP

= 1
2ku2. f1

2Iv2 is the kinetic energy of the roller tape and
1
2mu̇2, ignored earlier, arises due to the kinetic energy of the
stretched part of the tape.u̇ refers to the time derivative ofu.
In principle m sm=m0Lstd where m0 is the mass per unit
lengthd depends on time throughL. However, for all practical
purposesm can be treated as constant.g We write the dissi-
pation function asR=Fsv ,Vd=efsv ,Vddv, where fsv ,Vd is
assumed to be derivable from a potential functionFsv ,Vd,
physically represents the peel force, and is taken to depend
on the pull velocity and rupture speed as inf11g.

Using the Lagrange equations of motion,

d

dt
S ]L

]ȧ
D −

]L
]a

+
]R
]ȧ

= 0,

d

dt
S ]L

]u̇
D −

]L
]u

+
]R
]u̇

= 0,

and usingsa ,ȧ ,u,u̇d as the generalized coordinate, we get

ä = −
v̇
R

+
R

I

cosu

s1 − cosud
fsv,Vd, s2d

mü=
1

s1 − cosud
ffsv,Vd − kus1 − cosudg. s3d

Note that the right-hand side of Eq.s3d is the algebraic con-
straint in Eq.s10d of Ref. f11g or Eq. s5dd of Ref. f3g. These
equations in their present form are still not suitable for fur-
ther analysis as they have to satisfy the constraint Eq.s1d. In
the spirit of classical mechanics of systems with constraints
ssee Ref.f14gd, we derive the equation for the acceleration

variable v̇ in the constraint equation by differentiating Eq.
s1d and using Eqs.s2d and s3d. This gives equations of mo-
tion for a, v, u andv

ȧ = v − v/R, s4d

v̇ =
R

I

cosu

s1 − cosud
fsv,Vd, s5d

u̇ = V − v − Rscosudȧ, s6d

v̇ = − ü + Rssinudu̇ȧ − Rscosudä. s7d

Using Eqs.s2d and s3d in Eq. s7d, we get

v̇ =
1

s1 − cosudFku

m
−

fsv,Vd
ms1 − cosud

−
sR cosud2fsv,Vd

Is1 − cosud

+ FR

L
ȧ2fl cosa − Rscosud2gG . s8d

We retain the dynamization scheme introduced earlier
f11g adopted from the PLC effectf15g wherein the difference
between the maximum and minimum offsv ,Vd is assumed
to decrease with increasingV. The parametrized form of
fsv ,Vd used here is given by

fsv,Vd = 402v0.34+ 171v0.16+ 68esv/7.7d − 2V1.5

− s415 − 45V0.4− 0.35V2.15dv0.5. s9d

Equations9d mimics the general trend of the experimental
peel force function and is essentially the same as used earlier
f11g except that it accommodates larger excursions of trajec-
tories arising from the introduction of the additional time
scale fFig. 1sbdg. The fixed point of Eqs.s4d–s6d and s8d
given bya=0, v=V/R, u= fsV,Vd /k andv=V becomes un-
stable whenV is such thatf8sV,Vd,0 leading to a Hopf
bifurcation.

We have solved Eqs.s4d–s6d ands8d by adaptive step size
stiff differential equations solversMATLAB packaged and
studied the dynamics over a wide range of values of
I skg m2d, V sm s−1d for m skgd ranging from 10−4 to 0.1
skeeping k=1000 N m−1, R=0.1 m, and l =1 md. sHence-
forth, we suppress the units for the sake of brevity.d Here, we
present resultssobtained after discarding the initial tran-
sientsd for a few representative values of them when sI ,Vd
are at low and high values. We show that for lowm, we

FIG. 2. sad, sbd The v−F phase plots forI =10−5, V=1 corre-
sponding to the DAE and ODE solutions form=10−4. The solid line
showsfsv ,1d.

FIG. 1. sad Schematic plot of an experimental setup.sbd The
plots of fsv ,Vd for V=1 ssolid curved, V=4 sdotted curved.
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essentially recover the DAE solutions reported earlierf11g.
Further we show that the mass of the tape has a strong in-
fluence on the nature of the dynamics.

A rough idea of the nature of the dynamics can be ob-
tained by comparing the frequencyVu=sk/md1/2 associated
with u with Va=sRf/ Id1/2 corresponding toa. Since f sin
newtonsd is limited to 180–280, the range ofVa ss−1d is
1342–1673 for smallI s,10−5d decreasing to 42–53 for large
I s0.01d. In comparison,Vu ss−1d is 3162 for m=10−4 de-
creasing to 100 form=0.1. Thus, one expects the nature of
solutions to be influenced with increasingm for fixed I which
also depends ofV f11g.

Here, we present our numerical results. Consider the low
mass limit, i.e., low kinetic energy of the tape. Then the
right-hand side of Eq.s3d is small, and turnsfsv ,Vd−kus1
−cosud< fsv ,Vd−Fs1−cosud=0 swhich is the algebraic
constraint that makes the equations singulard. Thus, one ex-
pects that the DAE solutions are reproduced for smallm,
which we have verified for the entire range of values ofI and
V studied previouslyf11g. sFor numerical calculations, we
have usedm=10−4 as the low mass limit.d As an example
Figs. 2sad and 2sbd show the phase plots in thev-F plane
obtained using the DAE algorithm and ODE Eqs.s4d–s6d and
s8d for m=10−4, respectively, keepingI =10−5, V=1. It is
evident that the DAE solution is similar to the ODE solution.

Much more complex dynamics emerges as a result of a
competition between this additional time scale and other
time scales present in the system. Consider the results for
m=10−4 and 0.1, forI =10−2, andV=1. The smallm plots are

provided for the sake of comparison as they essentially cor-
respond to the DAE solution. Consider the phase plots in
v-F plane shown in Fig. 3sad for m=10−4 and 3sbd for m
=0.1. It is clear that the influence of increasingm is consid-
erable. In particular, note that the sharp changes inF in the
v-F plot fFig. 3sadg at the upper end ofv for small m are
rendered smooth for largem casefFig. 3sbdg. Indeed, the
effect of the additional time scale due to the finite mass of
the tape is also evident in the plots ofvstd for the low and
high mass cases shown in Figs. 3scd and 3sdd, respectively.
Finally, it is clear that the phase plotfFig. 3sbdg fills the space
and is suggestive of chaotic dynamics. The chaotic nature
can be ascertained by calculating the Lyapunov spectrum.
Using theQR decomposition methodf16g, we have calcu-
lated the Lyapunov spectrum and find a large positive expo-
nent with a value,4.4 s−1 fFig. 3sedg.

Increasingm does not always increase the level of com-
plexity of the solutions. As an example, Figs. 4sad and 4sbd
show plots ofvstd for m=10−4 and 0.1, respectively, forI
=10−2 for V=4. While the solution for smallm is similar to
that of DAE which exhibits several sharp spikes in velocity
fFig. 4sadg, for large masssm=0.1d, vstd is surprisingly
simple and is periodicfFig. 4sbdg. Indeed, this is better seen
in the phase plotsv-F for m=10−4 and 0.1 shown in Figs.
4scd and 4sdd respectively. In contrast to the low massv-F
plot, which is chaoticssee a similar DAE solution in Fig.
5scd in Ref. f11gd, a simple limit cycle emerges form=0.1.
As the nature of the dynamics can vary from a simple limit
cycle to a chaotic attractor as the three parameters are varied,
these results can be summarized as phase diagrams in the

FIG. 3. sad, sbd Phase plots of
v-F obtained form=10−4 and 0.1
for I =10−2, V=1. The solid line
showsfsv ,1d. scd, sdd The plots of
vstd for m=10−4 and 0.1.sed The
largest Lyapunov exponent,l for
m=0.1, I =10−2, V=1. sUnits of v,
V are in m s−1, F in newtons,I in
kg m2, t in seconds, andl in s−1.d

FIG. 4. sad, sbd Plot of vstd for
m=10−4 and 0.1 for I =10−2, V
=4. scd, sdd The corresponding
phase space trajectories.fsv ,Vd is
shown by a bold line.sUnits of v,
V are in m s−1, F in newtons,I in
kg m2 and t in seconds.d
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I-m plane for different values of pull velocities,V, as shown
in Fig. 5. Apart from the chaotic statespd seen for a few
values of the parameters, for most values, the system is pe-
riodic sPd and for a few other values, the attractor is long
periodic s3d. We also find asmarginallyd chaotic attractor
ssd for V=1, m=10−4, I =10−3, for which the positive
Lyapunov exponent is,0.03 s−1 swhich is much beyond the
error in computationd.

In summary, we have demonstrated that the missing time
scale arising from the kinetic energy of the stretched part of
the tape plays an important role in the peeling dynamics of
the adhesive tape. As the inclusion of this term lifts the sin-
gularity in the equations of motion hitherto considered, stick-
slip jumps across the two resistive branches emerge as a
consequence of the inherent dynamics. Further, our study
shows that the mass of the tape has a strong influence on the
nature of the dynamics. For low pull velocities, and highI,
the complexity increases, i.e., trajectories that are not chaotic

for low mass become chaotic with increasingm. In contrast,
for high V, the trajectories that are chaotic for lowm are
rendered nonchaotic with increase ofm.

Apart from resolving the central issue, the inclusion of
kinetic energy of the tape provides a mechanism for convert-
ing the potential energy stored in the stretched tape into ki-
netic energy and hence provides a basis for explaining acous-
tic emission during peeling. This involves first extending the
model to include the spatial degrees of freedom of the peel
front and including an additionalsruptured velocity depen-
dent dissipation function to mimic the AE energy dissipated
salong the lines inf17gd. The extended model also helps to
analyze the contact line dynamics of the peeling front, a
problem which is not well understood. Preliminary results
f18g show that the energy dissipated occurs in bursts similar
to the nature of AE signals seen in experimentsf5g. Here, it
is worthwhile to comment on the dynamization of the fric-
tion law. The physical origin of this can be attributed to the
viscoelastic nature of the fluid, which in turn implies a
frequency-dependent elastic constant. Thus as higher pull
speed allows lesser time for internal relaxation to be com-
plete, the viscoelastic fluid behaves much like an elastic
solid. Clearly, a rigorous derivation of the peel force function
from microscopic considerations that includes the effect of
the viscoelastic glue at the contact point is needed to under-
stand the dynamics appropriately.
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FIG. 5. Phase diagram in theI-m plane for various values ofV.
PeriodicP, long periodic3, chaoticsmarginald s and chaoticp.
sUnit of I is in kg m2 andm in kg.d
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